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ABSTRACT

A method is described by which percent impervious surface, including
concrete, asphalt, and varying roof tones,  is quantified at the Landsat Thematic
Mapper sub-pixel level. This technique is based on an artificial neural network,
which is capable of nonlinear, complex mappings of input patterns into output
percentages. The neural network is trained with highly calibrated reference
data acquired from heads-up interpretation and digitizing of land cover features
as depicted in 2-meter digital aerial imagery. The neural network, using data
from the six reflective bands from two different seasons of TM, as well as the
Kauth-Thomas transform and all within-date two-band ratios, for a total of 48
input features, was able to predict percent pixel composition for 10 different
land cover classes, five of them being different impervious surfaces.
Correlations with impervious surface calibration data ranged from 0.624 to
0.728,  and a correlation with the five-class impervious surface composite of
0.714. The results are promising for the creation of a Connecticut statewide
percent impervious surface layer for use in nonpoint source pollution modeling,
watershed quality assessment, as well as other environmental and engineering
applications.

INTRODUCTION

Explaining environmental concepts to the public and reaching them with
current information has always been a difficult task. Project NEMO, or Non-
point Source Education for Municipal Officials, was created and designed in an
effort to bridge this gap (Arnold et al., 1994). NEMO’s focus has been the
explanation of nonpoint sources and their link to different land uses. Particular
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attention is paid to the role of impervious, or paved, surfaces in the transport
and concentration of pollutants. To guide towns, NEMO outlines a three-tiered
strategy of natural resource-based planning, site design, and the use of
stormwater best management practices that towns can use to address their land
use and cope with nonpoint source pollution. NEMO is a joint venture of the
University of Connecticut Cooperative Extension System, with the University of
Connecticut Department of Natural Resources Management and Engineering
and the Connecticut Sea Grant College Program collaborating. Other
cooperating agencies include the Environmental Protection Agency, the
Connecticut Department of Environmental Protection, The Nature
Conservancy, Connecticut Chapter, and EnviroGraphics, Inc.

Nonpoint source (NPS) pollution has many origins. Water washing over the
land, whether from rain, car washing, or the watering of crops or lawns, picks
up an array of contaminants, including oil and sand from roadways,
agricultural chemicals from farmland, and nutrients and toxic materials from
urban and suburban areas. This runoff finds its way into our waterways, either
directly or through storm drain collection systems. The term nonpoint is used to
distinguish this type of diffuse pollution from point source pollution, which
comes from specific sources, such as sewage treatment plants or industrial
facilities. Scientific evidence shows that although huge strides have been made
in cleaning up major sources, our precious water resources are still greatly
threatened by polluted runoff. In fact, the 1994 National Water Quality
Inventory Report to Congress states that this type of pollution is the leading
cause of impairment in our Nation's rivers and streams. Urban runoff, in
particular, is the leading source of pollution in estuaries and is the third and
fourth leading source of pollution in lakes and rivers.

The need for information concerning the percentage of impervious surfaces has
become increasingly more important due to growing concern over water quality
in this country. The accurate mapping of impervious surfaces therefore plays an
important role for the management of water quality. Increased impervious
surface coverage can be a prime indicator of nonpoint source pollution and
water quality degradation. NEMO investigators measure the impervious area in
a town and compare it to a zoning-based build-out analysis to help highlight
potential pollution problems. Zoning maps, local basins, and land cover
information are combined to create the final images. Currently, Project NEMO
and other programs in Connecticut derive impervious information from land
use and land cover data (Arnold and Gibbons, 1996). These estimated values
tend to be too generalized and do not depict the true spatial pattern of
impervious surfaces in an area. This has led to the need for the development of
a model which would allow analysts to generate an impervious surface map for
a given study area at a finer level of biophysical discrimination, such as
described by Ridd (1995). This paper overviews a method for the generation of
percentage impervious surface data from Landsat Thematic Mapper (TM)



imagery, at the per-pixel level, using an artificial neural network as the
modeling tool and high-resolution digital aerial imagery for sub-pixel
calibration. Neural networks have proven to be effective analysis mechanisms
that involve complex relationships between remote sensing measurements and
biophysical parameters (Civco, 1993; Ridd et al., 1992; Stocker et al., 1995;
Wang and Civco. 1995).

DATA SOURCES AND PREPROCESSING

Landsat Thematic Mapper (Path 13, Row 31) image data from May 8, 1995
and August 28, 1995 were the principal source of data for impervious surface
mapping. These images, geometrically corrected and geocoded by EOSAT,
Inc., have the following properties: 30 meter pixel resolution, UTM Zone 18,
Clarke 1866 spheroid, and NAD27 datum. Both springtime and summertime
imagery was selected for impervious surface mapping because of their
respective merits. The May imagery (leaf off) allows for improved penetration
of forest canopies and better detection of potentially obscured impervious
surfaces, whereas the August imagery permits the distinction between some
springtime bare soil conditions, often resembling inert or impervious surfaces,
and their vegetated state during the growing season.

In addition to the Landsat digital data, aerial photographs and Digital
Orthophoto Quarter-Quadrangles (DOQQ’s) were also utilized for the
digitization of training sites. The aerial photographs were flown for the state of
Connecticut during the spring of 1990. These photographs are black-and-white
and at a nominal scale of 1:12000. The photographs were scanned into a digital
format at 150 dpi, resulting in a pixel size of approximately 2 meters on a side.
Georeferencing was performed by selecting ground control points (GCPs) from
transportation Digital Line Graphs (DLGs). Coordinate locations for road
intersections were identified from the DLGs and these GCPs were likewise
identified in the aerial photographs. Geometric correction was performed with
either a 1st or 2nd order level polynomial and cubic convolution was used for a
resampling method. Aerial photographs were rectified with projection
properties the same as those of the Landsat TM data being used. The quality of
the rectification was assessed by overlaying the transportation DLGs on the
rectified aerial photograph as well as superimpositioning with the TM imagery.
It was imperative that the two dates of TM data and the digital aerial
photographs be as precisely co-registered as possible to ensure accurate sub-
pixel characterization of land use and land cover types, especially impervious
surfaces.



CALIBRATION DATA COLLECTION

Training data were collected from the rectified aerial photographs and DOQQ’s
for sites within the towns of Waterford, Mansfield, Hartford, Manchester,
Putnam, Torrington, West Torrington, and Winsted. Areas in these towns were
selected based on familiarity by the analysts, and also for the variety of
impervious and non-impervious land covers existing in each. It was important
to incorporate into the training data as much variability as possible in terms of
reflectance characteristics of land cover features and also areal extent of
impervious surfaces (large and small expanses of impervious surfaces) while
maintaining a manageable training data set for use in the neural network. A
grid, with cells of 30 meters square, was created for each training area and
coregistered to each of the respective Landsat TM images. A bounding box was
also created to match the outside edge of the grid. In ArcView, the bounding
box was displayed over the rectified aerial photograph to highlight the area to
be digitized. Using the on-screen interpretation and digitization capabilities of
ArcView, land cover features within the bounding box were digitized into
separate shape files based on the land cover features listed in Table 1. The
shape files were converted to ArcInfo coverages and erroneous line segments
and other errors were cleaned. This coverage was then unioned with the grid
coverage, therefore providing information on the amount of each land cover
feature falling within its corresponding TM pixel. From the unioned digitized
and grid coverages, the percentage of each land cover feature within each pixel
was calculated. Lastly, the six reflective bands from each of the two dates of
TM imagery for the training data sites were converted to an ASCII tabular
format. These data, in conjunction with the actual percentage of each land
cover, were preprocessed and used to train an artificial neural network to model
the percent impervious and other cover at the per-pixel level. The overall
calibration data collection procedures for one of the study sites are illustrated in
Figure 1.

VEGETATED ROOF
    1.Forest     8.Bright Roof (TM dn value > 140)
    2.Grasses     9.Medium Roof (TM dn value <140, > 50)
    3.Forest/Grass Mix    10. Dark Roof (TM dn value < 50)
WATER PAVEMENT
    4.Water     11.Concrete
    5.Wetlands     12.Asphalt
BARREN LAND SHADOW
    6.Exposed Soil     13.Shadowed Impervious
    7.Sand     14.Shadowed Non-impervious

Table 1. Digitized land cover features.



Figure 1. Training data collection procedures.
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ARTIFICIAL NEURAL NETWORK PROCESSING

The data stream produced from calibration data collection consisted of 12
brightness values, six from each of the two seasons of TM data, and a vector of
sub-pixel percent composition of the 14 cover types listed in Table 1.
Preliminary studies indicated that water and wetlands could be combined into a
single class, and that the attempt to distinguish between shadowed impervious
surfaces and other land covers in shadow would be less than successful. This
remains a problem, however, in urban areas with tall structures casting long
shadows on impervious surfaces, but is rather inconsequential given the
cityscapes of Connecticut.

These data were further preprocessed by DataSculptor4 to create TM image
derivatives as well as to prepare the data for use with the NeuralWorks Pro II+
neural network development tool. In DataSculptor, the Landsat TM data were
transformed into the Kauth-Thomas measures of Brightness, Greenness, and
Wetness. Also, all pairwise band ratios were calculated for each of the two
dates. These data transformations resulted in an augmented vector of 48
measurements for each calibration pixel: six brightness values, three K-T
measures, and 15 ratios for each of the two dates. These data were accompanied
also by the per-pixel composition of each of ten cover types: forest; grass; forest
and grass mix; water; barren; bright, medium, and dark roof; concrete; and
asphalt. This dataset, consisting of 7,563 observations, was divided into a
training set of 5,042 points and a testing set of 2,561. From DataSculptor, these
two datasets were export into an ASCII format compatible with the
NeuralWorks Pro II+ neural network software.

A number of neural network paradigms and architectures, as well as different
combinations of input (the TM data and their transforms) and output data (the
per-pixel percent cover), were examined. The paradigms explored included
Back Propagation, Modular Neural Networks, Learning Vector Quantization,
and General Regression Neural Networks. Architectures included both single
and two hidden layer designs, as well as a varying number of neurons
(processing elements) per hidden layer. Input data streams ranged from the use
of the six brightness values from only a single date (May) to the full
complement of two-date TM data and their respective transforms and ratios.
Through systematic evaluation of the performance of each neural network
design, by way of monitoring root mean square error (RMSE) during the
training phase as well as assessing accuracy of the results during the
independent testing phase, it was determined that a single hidden-layer,
populated with 20 elements, back propagation network, with 10 outputs and all
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48 inputs, and using a sigmoid transfer function, was the most appropriate
paradigm-architecture for this problem. The final neural network design was
trained with these data for more than 500,000 iterations, achieving an RMSE of
0.099. The RMSE obtained with the test data was 0.103, a good balance
between the accuracy achieved with the training data and that of the test data,
indicating favorable generalization of this network. One concern that might be
expressed is that of over-training the network such that it remembers the input
patterns nearly-perfectly, but does not perform well with slightly different or
noisy data. This is not such a concern here, since the calibration data were
selected from around Connecticut and complete-statewide impervious surface
characterization will use these same dates of Landsat TM data.

The final neural network classification scheme was exported from NeuralWorks
into C-language source code, which was compiled into a DLL5  using Microsoft
Visual C++ version 4.0. This DLL can be addressed by ERMapper’s6 function
calls as a formula to be used in an ERM algorithm (for a discussion of the
ERMapper software and its capabilities, refer to Civco, 1996). In ER Mapper,
the physical datasets for the May and August Landsat TM data were combined
to create a virtual dataset (VDS), which included also, each date’s Kauth-
Thomas transforms and all pairwise band ratios, for a total of 48 data layers in
the virtual dataset. Another algorithm was created which calculated the pixel-
level percent cover for each of the 10 classes being analyzed using the DLL
from the trained neural network. An example of the ERMapper dialog box
illustrating this operation is shown in Figure 2. The syntax for the classifier is
{f_name,Input1… Inputn,Outputm}, where f_name is the compiled neural net-
generated DLL, Input1 through Inputn are the 48 input data, in this case, and
Outputm is the index of the output neuron, ranging from 1 to 10 (actually 0 to 9)
in this design. After the ER Mapper Virtual DataSet is processed by the
compiled neural network generated C-code, the product is an algorithm, or
alternatively physical or virtual datasets, predicting the percentage cover for
each class (m={1,10}). In our case, we summed the predictions for the five
related categories (concrete, asphalt, and the three brightnesses of rooftop) to
render a composite of percent impervious surface per pixel. Individually and
aggregately, the correlations between each of the five individual impervious
surface predictions with their calibration data are shown in Table 2, as is the
correlation between the aggregate impervious surface class.
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Figure 2. ER Mapper 5.2 Algorithm Equation Dialog Box for Neural Network
Impervious Surface (Asphalt Condition) Classifier.

Bright
Roof

Medium
Roof

Dark
Roof

Concrete Asphalt All Five

0.664 0.728 0.624 0.702 0.699 0.714
Table 2. Correlations between Neural Network Predictions of Impervious
Surface with Entire Calibration Test Dataset



The predicted percent impervious estimates were exported to a generic ASCII
file for import in IDRISI7, a fully-functional, very capable, general purpose
spatial data analysis software system. In IDRISI, the calibration images, with
actual percent cover by category derived from the 2-meter digitized aerial
photographs, were compared with the estimates derived from the neural net
process. Figure 3 illustrates the overall neural processing impervious surface
estimation and evaluation procedure.

Figure 3. Overview of Neural Network-based Impervious Surface Modeling
    and Evaluation
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RESULTS AND DISCUSSION

Figure 4 presents the results of the aggregated-class percent impervious surface
neural network prediction for one of the study sites, and Figure 5 is of that of
the calibration data for that area. Figure 6 is a difference image showing the
magnitude and spatial distribution of error between the neural network percent
imperviousness and that derived from on-screen interpretation and digitizing.
Figure 7 is a histogram of that difference image, with the frequency depicted on
a log scale. Note that a large proportion of the error (differences) are at or near
zero, and that there are relatively few large differences. 

Figure 4. Neural Net Percent Figure 5. Calibration Data Percent
Impervious Surface Prediction Impervious Cover
(darker tones indicate lower percent impervious surface cover, whereas brighter tones
indicate higher impervious surface cover {0,100%)

Figure 6. Difference Image between NN Prediction
 and Calibration Data (brighter tones indicate greater magnitude of

difference between calibration data and neural prediction)



Most of the errors in this sample impervious surface prediction stem from the
inclusion of some barren features into one or more of the impervious classes,
often with low percentages, but sometimes with high ones. Also, there is some
spatial overestimation of the spatial extent of impervious surfaces in medium to
high density residential areas. High degrees of correspondence, however, were
achieved for the high density impervious covers, such as the parking lots and
shopping centers, in the right-hand side and just below middle of Figure 4 (or
5), for example.

CONCLUSIONS

Artificial neural networks are a viable modeling tool for predicting percent
impervious cover at the sub-pixel level. The results were best for the aggregated
impervious surface categories, and of varying success with the individual
classes. Highest degree of agreement with the calibration data among the five
types of impervious cover was medium brightness roof surfaces, followed by
concrete, asphalt, bright roofs, and lastly dark roof surfaces. These estimates,
although imperfect, are far better than the current method of quantifying
impervious surface, which is based on assigning literature estimates to land
cover types as derived from satellite image classification. As a work in
progress, research will continue into refining neural network design to improve
both the precision and accuracy of this predictive model, especially before
implemented statewide.

ACKNOWLEDGMENTS

This material is based upon work supported by the Connecticut Department of
Environmental Protection under Grant CWF 330-R, “Land use and land cover
mapping for the Connecticut and New York portions of the Long Island Sound
Watershed”.

1

10

100

1000

-1
00 -9
0

-8
0

-7
0

-6
0

-5
0

-4
0

-3
0

-2
0

-1
0 00 10 20 30 40 50 60 70 80 90

Figure 7. Calibration Data minus Neural Prediction

Lo
g 

Fr
eq

ue
nc

y



LITERATURE CITED

Arnold, C.L., Jr., H.M. Crawford, C.J. Gibbons, and R.F. Jeffrey. 1994. The
use of geographic information system images as a tool to educate local officials
about the land use/water quality connection.. Proceedings of the Watershed '93
Conference, Alexandria VA. pp. 373-377.

Arnold, C.A. Jr. and C.J. Gibbons. 1996. Impervious surface: the emergence of
a key urban environmental indicator. American Planning Association Journal
62(2):243-258.

Civco, D.L. 1993. Artificial neural networks for land cover classification and
mapping. International Journal of Geographic Information Systems 7(2):173-
186.

Civco. D.L. 1996. ER Mapper 5.1 Image Processing Software Review.
Photogrammetric Engineering and Remote Sensing 62(3):269-274.

Ridd, M.K., N.D. Ritter, N.A. Bryant, and R.O. Green. 1992. Neural network
classification of AVIRIS data in an urban ecosystem, Presented at the Annual
Meeting of the Association of American Geographers, San Diego, CA.

Ridd, M.K. 1995. Exploring a V-I-S (Vegetation-impervious surface-soil)
model for urban ecosystem analysis through remote sensing: comparative
anatomy for cities. International Journal of Remote Sensing 16(12):2165-2185.

Stocker, J.W., J.D. Hurd, and D.L. Civco. 1995. Education of municipal
officials on nonpoint source pollution through the use of GIS technology.
Presented at the 8th Annual GIS Conference, Towson State University,
Towson, MD.

Wang, Y. and D.L. Civco. 1995.  Artificial neural networks in high
dimensional spatial data classification: a performance evaluation. Proceedings
of the 1995 Annual ASPRS/ACSM Convention, Charlotte, NC. 3:662-671.


