
Characterization of Coastal Wetland Systems using 
Multiple Remote Sensing Data Types and Analytical 

Techniques

Daniel Civco, James Hurd, and Sandy Prisloe 
Center for Land use Education and Research  

University of Connecticut 
Storrs, CT 06269-4087 USA 

daniel.civco@uconn.edu 
james.hurd_jr@uconn.edu 

michael.prisloe@uconn.edu 

Matha Gilmore 
Earth and Environmental Sciences 

Wesleyan University 
 Middletown, CT 06459-0139 USA 

mgilmore@wesleyan.edu 
 

Abstract — A multistage process for classifying coastal marshes 
using a rule-based object-oriented procedure applied to Landsat 
ETM data is discussed. The method, which uses both spectral and 
spatial criteria, produces classifications more useful than those 
based on per-pixel, spectral data-alone techniques. Analysis of co-
registered high resolution LIDAR-derived elevation and ADS40 
CIR imagery has demonstrated it is possible to discriminate 
among areas dominated by Phragmites australis, Typha spp. and 
Spartina patens.   
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I.  INTRODUCTION 
The tidal wetlands within the Long Island Sound estuary 

serve a critical role in maintaining the health of the Sound. 
Over the past two centuries, there has been significant 
disturbance and loss of tidal wetlands along the Sound due 
primarily to anthropogenic activities. Researchers at the 
University of Connecticut and Wesleyan University are 
continuing on the second year of a two year project to 
document the extent and vegetative composition of coastal 
marshes using moderate to high resolution satellite imagery 
from Landsat ETM+, Terra ASTER and QuickBird sensors, 
very high resolution airborne ADS40 imagery and high density 
LIDAR data in conjunction with in situ field measurements of 
plant spectra.  

This paper details continuing work on two of the major 
aspects of the overall project: (1) tidal wetland classification 
from Landsat imagery, and (2) use of LIDAR data to aid in 
discriminating and mapping tidal marsh plant communities. 
Another key aspect of this research addresses the classification 
of tidal wetland communities using multi-temporal, single-
season Quickbird imagery and in situ spectroradiometry. 

The collective results of this research will provide a 
beneficial tool for coastal wetland management and monitoring 
along the Long Island Sound estuary. 

 

II. PROCEDURES 

A. Study Areas and Data 
1) Landsat-based Sound-wide Coastal Marsh Mapping 

The area of interest consists of the entire Long Island 
Sound coastal region located in the Northeastern United States. 
In addition to the coastal regions, the study area extends up the 
tidally-influenced portions of the three rivers (Housatonic, 
Connecticut, and Thames) that serve as the primary source of 
freshwater to the Sound. Of the three major rivers that drain 
into the Sound, the Connecticut River watershed covers 71% of 
the overall area and contributes about 64% of the fresh water. 
The Sound is classified as an estuary because it is a place 
where salt water and fresh water mix, but unlike most estuaries, 
the Long Island Sound is open on both ends – at the Race at the 
eastern end, and the much more narrow East River and New 
York City Harbor at the western end. Mean tidal range varies 
from 0.7 meters in the east to 2.3 meters in the west. This 
significant difference is due to tidal resonance and the shape of 
the Sound. 

This analysis focuses on just the coastal region of Long 
Island Sound. A Landsat ETM image acquired on September 8, 
2002 was clipped to create an analysis region that includes tidal 
marshes and adjacent uplands. This region was created based 
on the (1) generation of a wetness layer using the difference 
between Landsat bands 2 and 5, (3) the application of a 
threshold to this layer to discriminate upland from coastal 
water and wetland areas, (4) the buffering of the water-land 
layer to 1.2 km inland, and (5) the extraction of pixels from the 
original September 8, 2002 Landsat ETM image from within 
just the buffer to be used in the image analysis.  

2) LIDAR-based Analysis of Marsh Plant Species 
The Ragged Rock tidal marsh is approximately 1.4 km2 in 

area, located on the west bank of the Connecticut River 
approximately 3 km from where the river discharges into Long 
Island Sound.  The marsh is a brackish tidal marsh subject to 
diurnal flooding.  Much of the area of the marsh has been 
ditched to provide drainage of the marsh surface in an effort to 
reduce mosquito breeding areas, but the marsh has been spared  
other modifications including any Phragmites control 
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measures. A small rectangular section of the southwest corner 
of the marsh and adjacent upland areas was selected for the 
study.  The study area covered approximately 0.4 km2 and 
measures approximately 0.6 km east-west by 0.6 km north-
south. 

Preliminary field work conducted in summer 2005 found 
more than 30 plant species in the marsh portion of the study 
area; however, the dominant species were Phragmites 
australis, Typha angustifolia, Typha xglauca and Spartina 
patens. Other common species included Spartina cynosuroides, 
Solidago sempervirens, Panicum virgatum, Schoenoplectus 
americanus and Schoenoplectus pungens. In general, the 
Phragmites and Typha spp. tend to grow as dense 
monocultures except at the stand edges where newer growth 
tends to be less dense and intermixed with other plant species. 
Distinct communities of Spartina patens also are located 
throughout the study site.  In many cases they exist as complex 
mosaics with intermixed areas of S. sempervirens, P. virgatum, 
S. americanus, S. pungens and other less common species. 

LIDAR data, collected on October 8, 2004 as part of a 
NOAA Coastal Services Center Coastal Remote Sensing 
project, were provided by Woolpert LLP. LIDAR data were 
collected at a height of 3,000 feet (914 m) using a Leica ALS50 
airborne laser scanner.  Two returns per pulse (first and last) 
were recorded. LIDAR data points had a nominal ground 
sampling distance of 0.9 m.  The reported horizontal accuracy 
was 0.5 m and the reported vertical accuracy was 0.002 m 
based on the average error between the bare-earth DEM and 21 
ground control points.  

16-bit Leica ADS40 color and CIR orthoimagery with 0.5 
m resolution were acquired on September 20 and 22, 2004 by 
EarthData, Inc.  The data were delivered as two sets of 122 tiles 
each (one RGB and one CIR) referenced to UTM Zone 18N, 
NAD83, GRS80. 

B. Methods 
1) Landsat-based Sound-wide Coastal Marsh Mapping 

 
The classification of coastal marshes was accomplished 

through a series of image processing and pattern recognition 
procedures.  

a) Unsupervised Classification (ISODATA clustering) 
Cluster-busting was employed to refine iteratively the 

results of unsupervised classification. One-hundred fifty initial 
clusters were labeled as water, tidal marsh, upland, or other 
(uncertain) in a first pass. Of the remaining 100 uncertain 
clusters, 50 were assigned to a land cover class, and in a final 
third pass, the remaining uncertain clusters were labeled. To 
remove many of the isolated coastal marsh pixels falsely 
identified in the upland regions, and to smooth the overall 
result, a 3x3 majority filter was used. This resulting layer 
serves as the pixel-based classification that is applied to the 
integration with the object-based classification. 

b)  Object-oriented Classification 
Object-oriented classification is the process of classifying 

image objects rather then individual pixels. Image objects are 

created through multiresolution segmentation which is the 
process of grouping contiguous pixels with similar qualities 
(i.e., spectral similarity) based on information from one or 
more input layers. For this research, image segmentation and 
object-based classification was performed using Definiens 
Imaging’s eCognition. 

Input data to the eCognition project consisted of the six 
Landsat ETM reflective bands, Landsat ETM thermal band, 
Landsat ETM panchromatic band, derived NDVI, principal 
components 1, 2, 4, and 6, and the wetness layer. All layers 
were utilized for the object-based classification. To perform the 
multiresolution segmentation to derive the image objects, 
however, only four ETM reflective bands (red, NIR, MIR1 and 
MIR2), NDVI, PC1, and the wetness layer were used. These 
layers were equally weighted in their contribution to the 
segmentation process. 

Two hierarchical levels of segmentation were derived and 
used for classification. For large objects, the scale parameter 
was set to 75, color 0.9 (from 0 to 1), shape 0.1 (color and 
shape must sum to 1), smoothness 0.5 and compactness 0.5 
(smoothness and compactness must sum to 1). Since the color 
parameter was set much higher than the shape parameter, the 
spectral information from the input layers was the most 
significant contributor to the creation of the larger image 
objects. These objects were classified as either water or upland, 
using exclusively the wetness layer as the identifying feature. 
Further, by employing a fuzzy decision rule, the class between 
that which is clearly upland and that which is clearly water 
(i.e., wetland) was distinguished.  

Classification of nested, finer scale objects (scale 
parameter=15, color=0.9, shape=0.1, smoothness=0.5 and 
compactness=0.5) was performed using a combination of 
eCognition and RuleQuest Research’s See5, a data mining tool 
producing a decision tree classifier developed by way of 
supervised training. At this finer scale, spatial as well as 
spectral variables were used, the former including measures 
such as object length, width, l-w ratio, shape index, and other 
spatial information such as the texture, size, shape, and context 
to other image objects. The set of classes identified at this finer 
scale included: Water-Rounded (ocean & lake), Water-
Elongated (tidal creeks), Low Marsh, High Marsh, High 
Marsh-bright, Grass-yellow, Grass-green, Forest, Barren, 
Bright-Development, Dark-Development, Dense-Development, 
and Sparse-Development. The output decision tree from See5 
was then re-created in eCognition using membership functions. 
Since tidal marshes were the target feature, only those branches 
and thresholds that classified these features were used.  

c) Classification Integration 
To combine the results of the ISODATA cluster-busting 

and object-oriented classifications, ERDAS Imagine’s 
Knowledge Engineer was utilized. The Knowledge Engineer is 
a GUI used to design a rule-based, decision tree approach to 
classification. The decision tree is comprised of variables and a 
hierarchy of rules, which are conditional statements, to produce 
a final classification output. Input variables consist of the final 
ISODATA classification and the object-oriented classification. 
The following data layers were also included to improve the 
final classification result: PC1, NDVI, Wetness, and elevation. 



Final output classes consisted of water, upland, low marsh, and 
high marsh.  

2) LIDAR-based Analysis of Marsh Plant Species 
ASCII files of LIDAR data were added to ArcGIS 9.1 as an 

XY event layer and exported to shapefiles in UTM Zone18N, 
NAD83, coordinates.  Nine tiles were merged into a single 
point shapefile and those points that fell within the area of the 
Ragged Rock tidal marsh were selected and exported as a 
shapefile. This file contained just over 3.75 x 106 point 
features.  A subset of LIDAR point features also was extracted 
to cover the smaller study area.  The file, which contained just 
over 1.0 x 106 point features, was used for analysis. 

A question the research team wanted to investigate was the 
degree to which plant height and structure in the study area 
could be characterized using LIDAR non-ground returns.  Field 
observations demonstrated that at this site there is distinct 
height stratification among marsh plant communities and it was 
hypothesized that comparable height classes could be derived 
from the LIDAR data. 

In ArcGIS, several transects were digitized across the study 
area using an ADS40 CIR image for reference (see Figure 2 for 
example). All LIDAR point features within 0.5 m of each 
transect were selected and UTM XY coordinates were added as 
attributes to these data subsets.  The UTM XY coordinates, Z 
values and class values were exported to Excel©. In general, S. 
patens is the dominant plant at lower height classes and Typha 
and Phragmites are the two higher classes.  

Polygon boundaries of relatively pure patches of P. 
australis, Typha spp. and S. patens and edge patches between 
P. australis and Typha spp. and between Typha spp. and S. 
patens were digitized in ArcGIS using ADS40 CIR imagery for 
reference. Interestingly, within the study area there were no 
clearly visible large edge patches where P. australis 
transitioned directly into S. patens. The polygons were 
manually classified based on visual interpretation and with the 
aid of a set of GPS field points, collected in summer 2005, 
which recorded dominant plant species information. Polygons 
were overlaid on the LIDAR points and all non-ground LIDAR 
point features were extracted into a dataset. Descriptive 
statistics for LIDAR Z-values (in our case, height of plant 
canopy) for each class of vegetation were generated using JMP 
statistical software.  

III. RESULTS 
1) Landsat-based Sound-wide Coastal Marsh Mapping 

Figure 1 provides a sample of the final integrated tidal 
marsh classification for a site near Stratford, CT, which can be 
compared to the September 8, 2002 Landsat ETM image used 
for the classification and a high spatial resolution ADS-40 
image collected on September 22, 2004.  

In addition, tidal marshes digitized by the Connecticut 
Department of Environmental Protection from color aerial 
imagery are outlined in white on each of the images. The 
sample shown here is representative of the quality of the tidal 
wetland detection from the Landsat ETM imagery throughout 
the Sound. As would be expected, larger marsh complexes are 

identified more easily. The classification does only a fair job at 
identifying the smaller marsh complexes. Problem areas occur  
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Figure 1. Results of the final integrated tidal marsh 
classification for a salt marsh near Stratford, CT compared with 
the Landsat ETM image used for classification and a high 
spatial resolution ADS-40 image. The white outlines represent 
tidal marshes delineated from aerial imagery by Connecticut 
Department of Environmental Protection personnel.  

near the boundary between the tidal marshes and upland 
forested areas and within the high marsh complex where there 
is confusion between tidal marsh and upland image objects. 
Small tidal marsh complexes are difficult to detect due to the 
spatial resolution of the Landsat ETM sensor being larger then 
many of these areas and the associated mixed pixels that 
subsequently occur. As a note, the distinction between high 
marsh and low marsh is a result of how wet the area is as 
opposed to specific vegetative cover. 



 
Figure 2. Leica ADS40 color infrared image of a portion of the 
Ragged Rock salt marsh study area. 

2) LIDAR-based Analysis of Marsh Plant Species 
Values for relatively pure stands of P. australis, Typha spp. 

and S. patens and for the two edge patch classes are reported in 
Table 1. Frequency distributions and box plots of the same data 
are shown in Figure 3. 

Figure 4 shows the grid data reclassified into four height 
groups; three which represent the dominant vegetation classes 
and the fourth group being upland areas outside the marsh.  
Vegetation class breaks were set at 2 standard deviations 
above the mean LIDAR heights for the 3 dominant plant 
communities (see Table 1).   

IV. CONCLUSIONS 
The primary objective of Long Island Sound-wide aspect of 

this research was to produce a robust yet repeatable method to 
identify tidal marshes of various sizes from readily available 
image and ancillary data. Preliminary results indicate a 
moderate level of success in meeting this goal. Future work 
will validate further the success of this classification technique 
in terms of providing an accurate, quick, and repeatable method 
of identifying tidal marshes. Is there a benefit in integrating 
two different classification techniques to improve the overall 
classification accuracy? An initial response would be “yes” 
each method serves to validate the result of the other. The 
problem still exists, however, of how to deal with classified 
pixels that do not agree. This remains a subjective issue that 
must be resolved during the integration process either by 
favoring one technique over the other, or by extracting pixels 
that do not agree and classifying them further as in this project. 
In addition, the inclusion of elevation data proved extremely 
valuable in eliminating misclassification of tidal marshes in the 
upland areas. Despite some of the shortcomings, it is believed 

that the final resulting tidal marsh classification provides a 
beneficial tool for coastal wetland management and monitoring 
of tidal wetlands along the Long Island Sound estuary.  

Preliminary work with the LIDAR data has demonstrated 
that it effectively can be used to help characterize plant heights 
for the three species of interest. Based solely on LIDAR non-
ground returns, it is possible to discriminate among areas 
dominated by P. australis, Typa spp. and S. patens.  Since we 
were unable to extract a bare-earth DEM from the LIDAR data, 
we were unable to use the data to measure actual plant heights 
and to map subtle changes in the marsh surface.  

A visual comparison of Figures 2 and 4 shows a strong 
correlation between the vegetation groups that can be seen in 
the ADS40 CIR image and the vegetation height classes 
created from the LIDAR data. Future image classification and 
field work will provide additional data with which we will 
assess the LIDAR data and their potential uses to improve 
classification. 

The next phase of the research will involve two activities; 
(1) extending the LIDAR analysis to the entire area of the 
Ragged Rock tidal marsh, and (2) segmenting LIDAR data and 
Quickbird imagery in eCognition and developing a rule-based 
classification hierarchy to produce more detailed and accurate 
vegetation maps of the marsh. Of particular interest will be 
assessing the degree to which mixed vegetation communities, 
typical of portions of the S. patens dominated pans, can be 
identified through a combination of LIDAR and Quickbird 
data.  
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Table 1. Descriptive LIDAR plant top-of-canopy height statistics for vegetation patches 
 Count  Mean 

(meters) 
Median 
(meters) 

Standard 
deviation 

Minimum Height Maximum 
Height 

P. australis 20780 3.0133 3.06 0.5210 -0.16 4.92 
Typha spp. 9453 1.3670 1.37 0.2391 0.42 3.46 
S. patens 13693 0.6390 0.63 0.0763 0.49 1.65 
Phrag-Typha edge 2699 1.8124 1.81 0.7305 0.53 4.02 
Typha-patens edge 1554 1.0337 0.98 0.3745 0.51 2.99 
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Figure 3.  Distribution of LIDAR Z-values 
(top-of-canopy height) for the three dominant 
plant communities. The box plots display 
outliers which represent returns that penetrate 
into the canopy in the case of the P. australis or 
that likely are from taller vegetation mixed in 
with the Typha spp. and S. patens. 
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Figure 4.  Shaded relief map of LIDAR generated vegetation canopy surface (a) and a grid reclassification of the 
vegetation canopy into 3 classes (b) that represent the general distribution of P. australis, Typha spp. and S. patens. 
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