
 

ASPRS 2001 Annual Convention, St. Louis, MO, April 23-27, 2001 

SUBPIXEL IMPERVIOUS SURFACE MAPPING 
 

Melisa Flanagan1 
Pacific Meridian Resources 
421 SW 6th Ave, Suite 850 

Portland, OR 97204 
 

Daniel L. Civco2, Associate Professor 
Laboratory for Earth Resources Information Systems 

Department of Natural Resources Management and Engineering 
The University of Connecticut 

Storrs, CT 06269-4087 
 
 

Abstract 
 
Identified by the EPA as the leading threat to surface water quality in the United States, nonpoint source (NPS) 
pollution is channeled into rivers and streams via impervious surfaces.  Impervious surfaces are anthropogenic 
features, such as roads, buildings, and parking lots, through which water cannot infiltrate into the soil.  Research 
from the past 15 years shows a consistent, inverse relationship between the percentage of impervious surfaces in a 
watershed and the health of its receiving stream. In conjuction with remote sensing satellite imagery, this 
relationship may be utilized as a time- and cost-effective indicator of overall ecosystem health and water quality. 
Impervious estimates are typically calculated by multiplying a land use specific percent impervious coefficient by 
the total area of that land use within a drainage basin.  Though a widely used method, this approach does little to 
promote accurate, standardized, measures upon which to base land use planning decisions.  Artificial neural 
networks and the ERDAS Imagine SubPixel Classifier were investigated as methods for the improved 
characterization and quantification of impervious surface cover. The principal goal of this research was to develop 
an accurate, standardized, and geographically extensible impervious surface prediction model.  This model was 
based upon Landsat Thematic Mapper data and was used to quantify, by land cover type, the percent imperviousness 
at the subpixel (30 m) level.  High accuracy planimetric data, in the form of an impervious footprint, were used to 
calibrate both models for four municipal study areas in Connecticut. Considering only impervious-pervious 
detection at the pixel level, overall accuracies for the artificial neural network and the ERDAS Imagine Subpixel 
Classifier predictions, respectively, were 92% and 94% for Marlborough, 90% and 92% for Waterford, 84% and 
86% for Woodbridge, and 74% and 71% for West Hartford. At the local watershed level, the RMSE for the four 
towns for the neural network approach and Subpixel Classifier, were, respectively: Marlborough, 1.29 and 0.66; 
Woodbridge, 2.51 and 0.99; West Hartford, 4.97 and 5.97; and Waterford, 1.24 and 2.98. Results from this  research 
will provide the foundation for subsequent efforts to quantify impervious surface cover using satellite remote 
sensing imagery. 
 
Introduction 
  
The accurate mapping of impervious surfaces within a watershed is essential to our ability to monitor urban-related 
non-point source pollution (NPS).  Non-point source pollution, or polluted runoff, has been recognized as the 
leading threat to surface water quality in the United States (Environmental Protection Agency 1994). Because 
impervious surfaces provide one of the primary means for the conveyance of runoff into waterways, they are 
intimately linked to issues of water quality.  Research indicates that the percentage of impervious surface within a 
watershed is a viable indicator of watershed health and ecosystem quality (Booth and Reinfelt 1993, Schueler 1994, 
Arnold and Gibbons 1996).  As a result, a need has developed for the ability to map accurately impervious 
phenomena at a watershed scale. Traditional satellite remote sensing classification methods, while able to discern 
general spatial pattern, extent, and distribution of land cover features, are unable to resolve mixed pixels, which 
occur when the material of interest occupies an area smaller than the sensor’s resolution. As a result, subpixel 
                                                 
1 mflanagan@pacificmeridian.com  503-228-8708 
2 dcivco@canr.uconn.edu   860-486-2840 



 

Figure 1.  The study area was comprised of the four Connecticut 
towns of Marlborough, West Hartford, Waterford, and 
Woodbridge. 
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classification techniques are emerging that specifically address the mixed pixel problem.  It was the purpose of this 
research to compare two subpixel classification methods for impervious surface characterization, using Landsat 
Thematic Mapper data. Impervious surface maps were derived using both an artificial neural network and a 
commercially available subpixel classifier, and were calibrated using high-accuracy planimetric data for four 
Connecticut towns. 
 
Methods 
 
Introduction 
 
Two per pixel impervious surface prediction models were constructed based upon: (1) artificial neural networks and 
(2) the ERDAS3 Imagine Subpixel Classifier.  These models were calibrated using planimetric data for structures, 
roads, driveways, parking lots, and other built surfaces, and further post-processed by applying an urban-related land 
use / land cover mask, and by recoding the initial continuous output into binary and categorical impervious layers.  
Spatial data processing occurred at all 
stages of the research and was performed 
using numerous software packages.  
IMAGINE 8.4 is a geographic image 
processing package and was used at 
every stage of the research. ESRI4 
ArcInfo 7.2.1 is a fully functional 
geographic information system and was 
used for data preparation, construction, 
manipulation, and editing. ESRI 
ArcView 3.2 is a desktop GIS package 
and was used for data visualization and 
basin summary analysis, and Microsoft 
Access97 is a relational database 
management system (RDBMS), which 
was used for data summarization. The 
impervious surface models were 
developed using NeuralSIM5, a Microsoft 
Excel-based neural network development 
and deployment package, and the 
ERDAS IMAGINE Subpixel Classifier6 
module. The Subpixel Classifier module 
is fully integrated with IMAGINE 8.4 
and was used for subpixel impervious 
surface characterization. 
 
Study Area 
 
The Connecticut towns of Marlborough, West Hartford, Waterford, and Woodbridge comprised the study area for 
this research (Figure 1).  The four towns are situated in three different physiographic regions of the state, and each is 
in a different developmental stage.  Marlborough is located in the Eastern Highlands and is a rural community, and 
West Hartford is located in the Central Valley, and represents the most urbanized town of the study area.  Waterford 
is located along the Coastal Plain and is a suburban town, as is Woodbridge, which is located in the Central Valley. 
It was considered essential that the study towns, as a whole, represent the developmental continuum from rural, to 
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Waterfor

Figure 2.  Impervious planimetric footprint for the town of Waterford, Connecticut, showing 
buildings, driveways, parking lots, and roads. 

suburban, to urban, so as to represent land cover features of the highest variability.  Data availability, however, was 
the primary reason for the four towns comprising the study area.  High-accuracy data were needed in order to 
calibrate both the artificial neural network and the Subpixel Classifier models, and at the commencement of this 
research, these were the only towns with planimetric data of acceptable quality. 
 
Data Types and Sources 
 
This research utilized three different data types: (1) high-accuracy planimetric data were used as reference, or 
calibration, data; (2) Landsat Thematic Mapper data were used to construct the impervious surface model; and (3) a 
statewide land use / land cover (LULC) thematic layer was utilized as a mask in post-processing. 
 
Impervious surface planimetric data layers consisting of buildings and houses, roads, driveways, parking lots, 
sidewalks (for West Hartford and Marlborough only), and recreation areas (for Marlborough and Woodbridge only) 
were used as calibration data for the impervious surface models. Figure 2 is an illustration of these data for the town 
of Waterford  The planimetric data were digitized from 1”=200’ aerial photographs, using stereographic techniques, 
by independent firms contracted by each of the towns.  The flight dates for each town were: Marlborough, 1997; 
West Hartford, 1989 (western portion), 1990 (eastern portion); Waterford, 1994; and Woodbridge, 1996. 
 

Statewide Landsat Thematic Mapper imagery from May 5, 1995 and April 28, 1994, were used for the development 
of the impervious surface prediction models.  Two images were used since the 1995 data did not cover the state in 
its entirety.  The 1995 TM data were of Path 13, Row 31, and the 1994 data were of Path 12, Row 31. These images, 
geometrically corrected and geocoded, had the following properties: 30 meter pixel resolution, UTM Zone 18, 
Clarke 1866 spheroid, and NAD27 datum.  Springtime imagery was selected for impervious surface mapping 



 

because of its ‘leaf-off’ condition, allowing for greater penetration of tree canopies and better detection of 
potentially obscured impervious surfaces. While these images were classified independently, an image mosaic was 
produced in order to create a TM scene that represented the full extent of the state. 
 
A statewide LULC thematic map (Civco and Hurd 1999) was utilized as a post-processing method in order to mask 
impervious surface pixel classifications occurring beyond the extent of already acknowledged urban land use.  The 
initial LULC thematic image represented 28 classes and was recoded into a binary layer representing only urban-
related. This image was later used as a multiplication operator input layer in order to mask the output from both 
impervious surface prediction methods.  
 
Calibration Data Processing 
 
Impervious surface planimetric data were used to derive the per pixel impervious surface percentage (i.e., fractional 
composition) for all corresponding 30m x 30m Landsat TM whole pixel occurrences within each town. After co-
registering the impervious planimetric and the statewide TM data, a grid was generated using ESRI ArcInfo 7.2.1, 
the cell size and geographic location of which corresponded to those of the TM image.  This coverage was then 
‘unioned’ to the impervious planimetric data.  In ArcView 3.2, these intermediate layers were respectively overlaid 
upon town boundary polygons, from which all whole pixels, existing within the town boundary, were selected.  The 
result of this selection was then used to ‘clip’ each impervious planimetric layer to create a final layer that consisted 
of all impervious surfaces, delineated by the same coordinate space as the TM image, wholly within each town. 
 
ArcView 3.2 was then used to calculate, given the 900 m2 area of each pixel, the impervious surface percentage for 
each pixel.  The output was a DBF table that included for each town, the easting-northing coordinates, and subpixel 
impervious surface percent for each pixel.  These tables were subsequently imported into a Microsoft Access 
database. The per pixel imperviousness DBF file was also converted to ASCII table format, and further converted 
into an image, using the IMAGINE ‘Convert ASCII to Pixel’ utility.  In this manner, the actual per pixel percent 
imperviousness for each town was converted to a continuous value, raster image {0,100}. This image file was then 
recoded into a thematic image whose values corresponded to the Subpixel Classifier output image format, which 
represents eight class values, of 10% increments, greater than 20%. This final, recoded layer for each of the four 
study towns comprised the reference, or calibration, data for both the artificial neural network and the subpixel 
classifier impervious surface prediction models. 
 
Artificial Neural Networks 
 
The artificial neural network impervious surface prediction model consisted of a two-tier neural network series, 
wherein the output from the first network comprised the input to the second.  The final output consisted of per pixel 
impervious predictions for each of the four study towns.  These were then converted into a thematic image layer and 
recoded to depict eight classes of 10% imperviousness, greater than 20%; corresponding to the output format of the 
ERDAS Imagine Subpixel Classifier. Artificial neural network training data consisted of Landsat TM band 
reflectance values for geographic subsets throughout the state, as had been processed by Civco and Hurd (1997), as 
well as for the corresponding impervious Areas of Interest (AOI) that constituted the training file for the ERDAS 
Imagine Subpixel Classifier.  

 
In the case of the TM subsets, small areas depicting a variety of impervious and non-impervious land cover features, 
were used from the towns of Hartford, Manchester, Mansfield, Putnam, Torrington, and Waterford.  Civco and Hurd 
(1997) had obtained the actual land cover class values of the corresponding geographic areas by digitizing aerial 
photographs and Digital Orthophoto Quarter-Quadrangles.  The percent fractional composition for each of the 
following land cover classes was then calculated for each 30m by 30m grid corresponding to the geographic space 
of the TM pixels: vegetation, water, bare soil, bright impervious, medium impervious, and dark impervious. The TM 
pixel brightness values that comprised the ERDAS Imagine Subpixel Classifier impervious training areas were also 
appended. Using the Area of Interest (AOI) tool, whole pixel occurrences of bright, medium, and dark impervious 
areas were selected throughout the state, and their brightness values were then extracted from the image, converted 
to ASCII table format, and appended. The TM brightness values for the entire training file were then converted to 
five normalized ratios: a normalized difference vegetation index (NDVI); a water index; an iron oxide index; a clay 
mineral index; and a ferrous content index. These ratios, which incorporated information from all six reflective TM 



 

bands, were chosen so as to reduce any topographically-induced reflectance variability within the TM data, as well 
as to allow for the greatest degree of spectral separability among the represented land use classes. Further, these 
transformations had the effect of normalizing the TM brightness values {0,255} over the range of {-1,+1} or {0,1}, 
magnitudes of data more amenable to neural processing.  
 
An artificial neural network was developed for the purposes of mapping the relationships from the TM ratios to the 
subpixel land use classes, using NeuralWare. The network architecture included five input nodes, corresponding to 
the five TM ratios, 14 hidden nodes, and six output nodes, corresponding to the six types of cover and impervious 
classes, for which the actual pixel percentages were known.  Internal network correlation during the training stage 
was 0.8036. Running the network on the training data resulted in output predictions for each of the class categories 
of vegetation, water, bare soil, bright impervious, medium impervious, and dark impervious.  The output values 
from this first neural network subsequently comprised the input data for a second neural network. 
 
A second neural network was developed that utilized as inputs, the output predicted values for the six class 
categories of vegetation, water, bare soil, bright impervious, medium impervious, and dark impervious from the first 
network.  The rationale in developing a two-tiered neural network model was to allow the second neural network to 
learn the mistakes of the first and refine the transforms, resulting in a more accurate prediction values.  The pixel 
values for the three categories of bright impervious, medium impervious, and dark impervious were then summed, 
resulting in a per pixel estimation of imperviousness.  The second network architecture consisted of six input nodes, 
corresponding to the output from the first network, six hidden nodes , and one output node – representing the 
predicted imperviousness for each pixel. Internal correlation during the training stage of the second network was 
0.8902, and running the network on the training data resulted in a correlation of 0.895 between the actual and the 
predicted subpixel percent imperviousness. TM data, transformed into the five ratios, for each of the study towns 
were then processed through the two-tiered neural network series, resulting in subpixel impervious surface 
predictions for each town.  These continuous {0,100} data were subsequently recoded into eight, 10% classes, 
greater than 20%, corresponding to the output format of the ERDAS Imagine Subpixel Classifier. 
 
ERDAS Imagine Subpixel Classifier 
 
The ERDAS Imagine Subpixel Classifier module is comprised of four required steps: preprocessing, environmental 
correction, signature derivation, and MOI classification.  The first two steps are autonomous – preprocessing 
resulting in a hidden, companion file to the original image being classified, and environmental correction resulting 
in a CORENV companion file that contains information pertaining to atmospheric and environmental correction 
factors.  Signature derivation and MOI classification are detailed below. Additional information can be found in 
Flanagan (2000) and Flanagan and Civco (2001). 
 
Impervious training areas throughout the state were manually selected using the ERDAS IMAGINE Areas of 
Interest (AOI) tool, for each of the three categories of bright, medium, and dark imperviousness.  Previous research 
(Civco and Hurd 1997) indicated that the diverse reflectance characteristics of anthropogenic impervious features 
were best represented by considering imperviousness a composite class comprised of three sub-classes.  These sub-
classes  were considered to represent the varying spectral characteristics of concrete and asphalt, the two major 
components of anthropogenic impervious features. Using the optional Signature Combiner function in the ERDAS 
Imagine Subpixel Classifier, these imperv ious sub-classes were subsequently grouped into a multi-signature file 
called a ‘family’, so that each sub-class was treated independently during classification.  Signature families typically 
represent variations in the signature for a single material of interest, and are used to detect more accurately the 
material despite these variations.  
 
The final step in the ERDAS IMAGINE Subpixel Classifier, Material of Interest (MOI) classification utilized as 
inputs the initial TM image data, the corresponding environmental correction file derived from the Environmental 
Correction step, and the impervious signature ‘family’ file. A classification tolerance of 1.50 and eight output classes 
of 0.1 increments were selected.  Signature tolerance is a parameter that can be used to adjust the number of MOI 
detections, and its value can be increased to include more pixels in the classification result, or decreased to reduce 
false detections.  Output from this final step resulted in a four-band thematic overlay detection file  – one band 
showing impervious detections for each of the sub-class signature files, and one band showing detections for the 
combined contribution of the three sub-classes.  The final ERDAS Imagine Subpixel Classifier image consisted of 
the fourth band of this detection file. 



 

Figure 3.  Misregistration can significantly affect classification accuracy even at a 
relatively small scale.  Given the per pixel impervious percentages (I.) overall 
accuracy can be seen to decrease (II.) as an effect of misregistration by 50% with a 
shift of half a pixel (a.), 75% with a diagonal shift of half of a pixel (b.), or 100% 
with a shift of one pixel (c.). 
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Post-processing  
 
Given the similarities in spectral reflectance between bright impervious features and barren land (or bare soil) and 
clouds, an urban-related LULC mask was employed as an additional post-processing step.  The 1995 statewide 
LULC (Civco and Hurd 1999) thematic layer had a Level I overall classification accuracy of 88.7%, and omission 
and commission accuracy percentages for the ‘urban’ category of 85.5% and 85.9%, respectively.  A binary layer 
was generated from the initial 28 classes, representing only the four urban-related categories.  The ERDAS Imagine 
Operators utility was subsequently used to multiply the binary urban-related thematic layer with the output from the 
impervious surface prediction models to create a new ‘masked’ image, which included only those predicted 
impervious values that occurred within areas accepted to be urban-related land use. 

 
From a scientific 
perspective, how well each 
model predicted actual 
percent imperviousness at 
the subpixel level, as 
expressed by the 
calibration planimetric 
data, is of principal 
interest. However, even 
slight mis -registration 
between the reference and 
TM data could result in 
potentially large 
differences between actual 
and predicted values, as 
illustrated in Figure 3. 
Also, from the 
management perspective, 
the assessment of 
impervious surfaces is 
more meaningful when 
reported on a landscape 
management unit such as 
a drainage basin. 
Therefore, per pixel-based 
impervious surface data 
were summarized over the 

local drainage basin unit. In ArcView, this is a matter of: (1) converting the ERDAS Imagine image (.img) files into 
ArcView GRID (Spatial Analyst) files; (2) reclassifying the eight intervals {1,8} of imperviousness into increments 
of 10%, starting at the 20-30% lower threshold {0%, 25%, 35% … 95%}, (3) intersecting each town boundary 
theme with the statewide drainage basins; and (4) calculating the average percent impervious surface (and other 
statistics), from the reclassified GRID, by summarizing zones of the town-constrained local basins.  
 



 

Figure 4.a.  Waterford TM source 
data. RGB of Bands 4,5, and 3. 

Figure 5.d..  Initial ERDAS Imagine 
Subpixel Classifier impervious 
prediction, in two classes. 

Figure 5.c.  Initial artificial neural 
network impervious prediction, in 
two classes. 

Figure 4.b.  Rasterized planimetric 
footprint, representing greater than 
20% imperviousness per pixel, in 
two classes. 

Results and Discussion 
 
Binary Impervious Predictions 

For the purposes of 
discerning whether the 
impervious surface 
prediction models were 
viable methods of 
ascertaining impervious 
surfaces, the first stage of 
analysis compared the 
output from both 
impervious surface 
models to the planimetric 
data on a binary scale - 
both for its initial output, 
and after masking the 
initial output with the 
binary, urban-related, 
1995 LULC layer.   
 
Binary layers were 
calculated by recoding the 
planimetric data and the 
model output data such 
that pixels with subpixel 
impervious occurrences, 
or predictions, greater 
than 20% were given a 
value of ‘1’, and pixels 
having an impervious 
value of less than 20% 
were given a value of ‘0’.  
This resulted in each of 
the planimetric, neural 
network prediction, and 
ERDAS Subpixel 
Classifier prediction 
layers being represented 
on the same scale. Figure 
4 shows the TM source 
data, the binary 
planimetric impervious 
footprint, the initial binary 
artificial neural network 
output, and the initial 
binary ERDAS Subpixel 
Classifier output for 
Waterford. 
 
 

These images may be assessed on a qualitative level by visually comparing both the neural network and the ERDAS 
Imagine Subpixel Classifier output with the planimetric data. Qualitative analysis of the initial output from both 
models, in binary format, for all four study towns indicates that both models were largely successful in discerning 
major road features and the larger impervious areas – particularly for the two more developed towns of the study 
area.  In West Hartford and Waterford, the larger contiguous patches of impervious surfaces and road networks 



 

appear to have been successfully detected by both models. In contrast, there appears to be relatively inadequate 
impervious detection for the two rural towns of Marlborough and Woodbridge.  Although the major road (CT Route 
2) running through the center of Marlborough was detected by both models, and particularly by the ERDAS Imagine 
Subpixel Classifier, this is less the case for the minor roads. A similar effect can be seen for the town of 
Woodbridge, for which the major impervious area towards the southeastern portion of the town was detected but 
again, this is less the case for the minor roads and road networks. As a result of qualitative analysis, it may be 
hypothesized that the further along the developmental scale a town, the more amenable that town may be towards 
impervious surface mapping.  It is noteworthy that both models have classified the cloud, visible in Figure 4.a., in 
the northwestern corner of Waterford, as being an impervious feature.  This is due to the similarity in reflectance 
values from both cloud cover and impervious features. Other land cover features that are commonly misclassified 
for the same reason are agricultural land, or barren land, and sand.   
 
Overall accuracies for both the artificial neural network and the ERDAS Imagine Subpixel Classifier impervious 
predictions, respectively, were 91% and 93% for Marlborough, 87% and 88% for Waterford, 83% and 85% for 
Woodbridge, and 73% and 71% for West Hartford.  These results would indicate that the rural town of Marlborough 
was most accurately classified for impervious surfaces, followed by the suburban town of Waterford, followed by 
the rural town of Woodbridge, followed by the suburban-urban town of West Hartford.  The ERDAS Imagine 
Subpixel Classifier obtained higher overall accuracy values for three towns, while the artificial neural network 
model obtained a higher overall accuracy value for the town of West Hartford, though only with a 2% difference.  
Despite the relatively consistent level of classification accuracy between the two models, it should be noted that the 
overall accuracy values are inflated due to the inclusion of the ‘0’ class.  Since overall accuracy is calculated by 
dividing the sum of the total number of correctly classified pixels by the total number of reference pixels, the 
resultant value not only indicates how well the prediction models classified impervious pixels, but also how well the 
prediction models successfully classified non-impervious pixels.  
 
Qualitative assessment of the masked artificial neural network and ERDAS Imagine Subpixel Classifier output 
revealed the removal of many of the smaller, isolated, impervious-predicted areas.  Since these data represent the 
masked initial data, this is directly attributed to the LULC mask, the effect of which would have removed any pixels 
occurring outside areas already mapped as an urban-related land use (Civco and Hurd, 1999).  There was also the 
noticeable removal of the misclassified cloud pixels in the northwestern portion of Waterford, which had been 
classified as impervious because of their similarly high reflectance values. Pixels along the southern coastline of 
Waterford were also ‘cleaned up’, their having been misclassified due to the high reflectance values of sand. 
 
Sand, bare soil, and barren land were problematic features for both impervious surface prediction models due to the 
similarity in their signature reflectance curves. The misclassification of these features provided the primary 
motivation for utilizing a LULC mask, as it represented a means with which to remove these misclassified pixels 
from the impervious images.  Although there is a high degree of temporal continuity - both the TM image and the 
LULC being from 1995 - a shortcoming of this method is that the masked impervious surface prediction model 
results would then be related to the 88.68% (Level I) overall classification accuracy of the LULC layer.  In order to 
reduce errors of commission, however, it was thought that the benefit of removing the misclassified pixels of similar 
reflectance value from the impervious images, outweighed the cost of them remaining.  Overall accuracies for the 
artificial neural network and the ERDAS Imagine Subpixel Classifier impervious predictions, respectively, were 
92% and 94% for Marlborough, 90% and 92% for Waterford, 84% and 86% for Woodbridge, and 74% and 71% for 
West Hartford.  Compared to the initial results, these overall accuracy values represent a slight increase in 
classification accuracy for both methods.  As was the case for the initial un-masked results, the ERDAS Imagine 
Subpixel Classifier better classified the three towns of Marlborough, Waterford, and Woodbridge, and the artificial 
neural network better classified the town of West Hartford though again, only with a 3% difference.   
 
Eight-class Impervious Predictions 
 
For the purposes of determining the within class impervious discrimination of the artificial neural network and 
ERDAS Imagine Subpixel Classifier impervious surface prediction models, the second stage of analysis compared 
the output from both impervious surface models to the planimetric footprint on a categorical scale.  A more refined 
analysis, the accuracy of the impervious surface prediction models was calculated after recoding the initial 
prediction values into eight 10% subpixel prediction increments, greater than 20%.  
 



 

Figure 5.a. Waterford TM source data. 
RGB of Bands 4,5, and 3. 

Figure 5.d.  ERDAS Imagine Subpixel 
Classifier impervious prediction after 
applying 1995 LULC mask, in eight 
classes. 

Figure 5.c.  Artificial neural network 
impervious prediction after applying 
1995 LULC mask, in eight classes. 

Figure 5.b.  Rasterized planimetric 
footprint, representing greater than 20% 
imperviousness per pixel, in eight 
classes. 

Since the default output format for the ERDAS Imagine Subpixel Classifier is in eight 10% classes greater than 
20%, the planimetric data and the artificial neural network output were correspondingly recoded so as to have the 
same format as the subpixel classifier output. Figure 5 shows the TM source data, the eight-class planimetric 
impervious footprint, the initial eight-class artificial neural network output, and the initial eight-class ERDAS 
Imagine Subpixel classifier output, for Waterford. With the exception of their having been recoded into eight 
classes, these data represent the same pixel occurrences as the binary impervious predictions. 
 

Unlike for the binary 
impervious prediction layers, 
qualitative analysis for the 
eight-class artificial neural 
network and ERDAS 
Imagine Subpixel Classifier 
output considered, for each 
pixel, the respective class to 
which that pixel was 
assigned.  By comparing the 
color intensity of the output 
images in relation to the 
color intensity of the 
planimetric data (increasing 
imperviousness represented 
by intensity) both models 
appeared to over-predict the 
degree of imperviouness for 
those pixels for which 
impervious surfaces were 
predicted. 
 
Overall accuracy for the 
eight-class artificial neural 
network and the eight-class 
ERDAS Subpixel Classifier 
imperviousness predictions, 
respectively, were 22% and 
23% for West Hartford, 24% 
and 20% for Waterford, 23% 
and 21% for Woodbridge, 
and 20% and 18% for 
Marlborough.  Significantly 
lower than the overall 
accuracy values obtained for 
the output in binary form, 
these results implied that 
both impervious surface 
models were unsuccessful in 
determining the per pixel 
percentage of impervious 
surfaces. However, 
inspection of the error 
matrices reveal that much of 
the confusion is among 
adjacent Percent impervious 
surface classes. Futher, as 
alluded to previously, even a 
slight misregistration 



 

between planimetric reference data and sub-pixel percent impervious predictions can produce large errors in 
accuracy, when comparing on a pixel-by-pixel basis. A more meaningful assessment of the value of the res ults is to 
examine them at the drainage basin level, a unit commonly used in non-point source pollution modeling. 
 
Local Drainage Basin Predictions 
 
Figure 6 illustrates an example of the actual (from the planimetric data) and predicted (from neural processing and 
Subpixel Classification) percent imperviousness for the local drainage basins of Waterford. Even a cursory 
inspection of a graphical rendition of the results reveals a high degree of correspondence between the basin-level 

impervious surface 
measures based on the 
planimetric (reference) 
data and the model 
predictions. In general, in 
the case of Waterford, the 
neural network under 
estimated imperviousness 
in moderately developed 
basins (>5% IS); whereas 
the Subpixel classifier 
over estimated some of the 
more highly developed 
basins (>15% IS). The 
neural net agreed better 
with the reference data in 
low urban density 
watersheds (<3% IS), 
whereas the Subpixel 
Classifier tended to 
overestimate the percent 
imperviousness in those 
basins.  
 
A standard root mean 
square error (non-
weighted) was calculated  
between the local drainage 
basin percent impervious 
surface coverage as 
derived from the reference 
planimetric data and that 
derived from the results of 
each the neural network 
model and the Subpixel 
Classifier. This was done 
for the basins falling 
wholly or partially within 
Marlborough (n=22), 
Woodbridge (n=16), West 
Hartford (n=19), and 
Waterford (n=54). The 

RMSE for the four towns for the neural network approach and Subpixel Classifier, were, respectively: Marlborough, 
1.29 and 0.66; Woodbridge, 2.51 and 0.99; West Hartford, 4.97 and 5.97; and Waterford, 1.24 and 2.98. 
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Discussion 
 
There are a number of potential sources of error that could have contributed to the predictions of the artificial neural 
network and the ERDAS Imagine Subpixel Classifier impervious surface prediction models. In general, these may 
pertain to the planimetric and Thematic Mapper data themselves, the study areas, the impervious prediction models 
themselves, and the LULC mask layer.   
 
In terms of the data, it may be the case that high-resolution planimetric data and coarse resolution TM satellite data 
are simply too dissimilar for use in impervious surface mapping.  It may be hypothesized that the relatively high 
degree of omission and commission errors observed in the eight class impervious predictions were an artifact of 
using such high-resolution data as an accuracy assessment reference for what are coarse-resolution prediction 
models.   
 
Misregistration among the different data types may also have negatively influenced the results. This research was 
wholly predicated upon all of the data exhibiting near-perfect subpixel co-registration. However, given the coarse 
resolution of the TM data, even slight misregistration may introduce large error.  Figure 3 illustrates the effect pixel 
misregistration can have on overall accuracy - an effect that may particularly pertain to linear features, such as 
roads, where a shift of one pixel can result in reduction in accuracy value of 100%. Data availability, or the 
contemporaneousness of the data, was also a possible source of error.  Although the Thematic Mapper data were of 
1995, the date of the reference data varied by town.  Waterford planimetric data were from 1994 - a fact that 
undoubtedly contributed to Waterford’s consistently obtaining higher accuracy values – and Woodbridge and 
Marlborough data were from 1996 and 1997, respectively.  In comparison to the date of the planimetric data, their 
later dates were a potential source of error.  Planimetric data for West Hartford were from, for the western portion of 
the town, 1989, and for the eastern portion of the town, 1990.  While these predate the Thematic Mapper data, it 
may be argued that West Hartford also obtained higher accuracy values because of its already-existing urban 
infrastructure. 
 
Certainly, issues regarding the study areas themselves were possible sources of error. It would have been 
advantageous to include a greater number of study areas, across a greater physiographic and developmental 
spectrum.  At the time of this research, however, the four towns utilized were the only towns within the state of 
Connecticut with digital data readily available to these investigators, of the resolution needed.  It also would have 
been advantageous were high-resolution, planimetric data available from an entirely urban town. 
 
The impervious surface training data may have included possible sources of error.  In the case of the artificial neural 
network, the variability of impervious features may not have been adequately represented by the Civco and Hurd 
(1997) training areas.  This would have meant that the neural network was unable to identify certain types, or 
conditions, of imperviousness, ultimately contributing to low accuracy values.  In the case of the ERDAS Imagine 
Subpixel Classifier, the bright, medium, and dark Areas of Interest (AOIs) may also not have captured the variability 
of impervious features found throughout the state.   
 
Also, being a relatively new and unproven image processing technique, the performance of the ERDAS Imagine 
Subpixel Classifier needs further evaluation since there are few studies documenting its use and effectiveness.  The 
fact that its output is forced into 10% bins significantly reduces the opportunity to perform many types of accuracy 
assessment.  This would not be the case were the software to allow continuous {0,100} output.  An alternative 
method to perform accuracy assessment would be to consider each pixel as having the midpoint value of the class to 
which it was assigned (e.g., a pixel assigned to Class 8 would have the equivalent real value of 95).  Or ancillary 
data may be recoded so as to correspond to the ERDAS Imagine Subpixel Classifier output format - such as was 
done in this research. 
 
The urban-related LULC mask layer was also a potential source of error.  Although it was derived from 
contemporaneous 1995 Thematic Mapper data, its inherent error could be seen to affect the producer’s and user’s 
accuracy of the masked impervious surface model output.  On the other hand, using the LULC mask for the binary 
predictions did result in an increase in producer’s and user’s accuracy, indicating that it successfully removed those 
errors of commission caused by the spectrally similar land cover features of agricultural land, bare soil, and sand 
(and clouds).   



 

 
Conclusion 
 
Building upon the previous endeavors of Civco and Hurd (1997), Sleavin (1999) and Sleavin et al. (2000), this 
research represents a forward step in our ongoing efforts toward developing methods with which to extract 
impervious cover at the TM subpixel level.  It was the purpose of this research to compare two Landsat Thematic 
Mapper subpixel classification methods for impervious surface characterization. For the most past, results indicated 
that to the extent that coarse resolution satellite imagery may be used to map impervious features, the ERDAS 
Imagine Subpixel Classifier prediction model was more accurate than the artificial neural network for the purposes 
of impervious surface mapping.  There appeared to be some evidence that towns further along the developmental 
spectrum were more amenable to impervious surface detection, but this may have been an artifact of the relatively 
small number of towns that constituted the study area.  Although the impervious surface models did not obtain 
accuracy values sufficient to allow their being deployed as a stand-alone application, the models themselves may not 
be the cause.  This is particularly the case given the significantly large effects that mis -registration among the data 
can have upon classification accuracy.  As there was no systematic attempt to quantify or determine the degree to 
which mis -registration affected the results, it is recommended that further consideration be given to develop 
methods with which to do so.   
 
Results from this research will provide the foundation for subsequent efforts to quantify impervious surface cover 
using remote sensing satellite imagery 7.  The purpose of this study was to investigate two additional methods for 
subpixel land cover mapping - in particular, a spectral unmixing model using maximum entropy and the 
Mahalanobis Distance algorithm - and will integrate Landsat Thematic Mapper data with Landsat ETM+, IKONOS, 
and ADAR 5500 data.  Results indicate that the integration of higher resolution image data into the model itself 
might facilitate impervious surface detection. 
 
The utility of using advanced techniques in geospatial data processing for the purposes of addressing natural 
resource management problems is an increasing practice among today’s land use planners and decision-makers.  
Projects like the Nonpoint Education for Municipal Officials (NEMO)8 and the Northeast Applications of Useable 
Technology in Land Planning for Urban Sprawl (NAUTILUS)9, have been hugely successful in using the power of 
remote sensing technology for the purposes of addressing the impact of urban sprawl on our communities and on our 
natural systems, such as monitoring watershed dynamics for ecosystem health.  
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